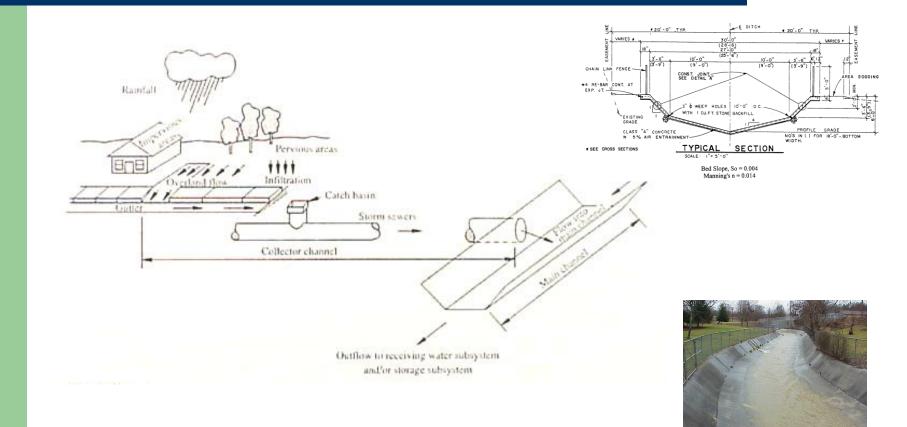
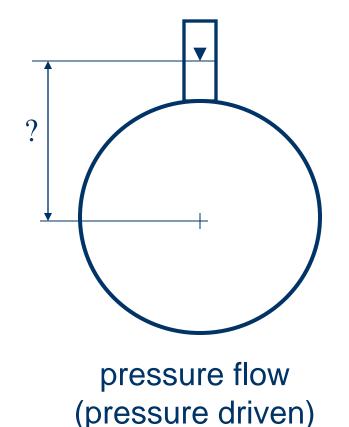
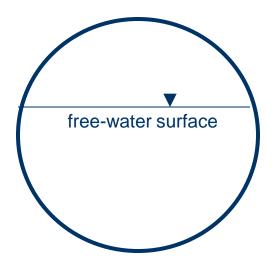

OPEN-CHANNEL FLOW Introduction Ch-10 of HH


- Application
- Characteristics
- Section Parameters
- Flow State
- Types of Flow


Bed Slope, So = 0.004 Manning's n = 0.014



Application

Pressure vs. Open-channel flow

open-channel flow (typ. gravity driven)

Section Parameters

- Reach Length =L [L]= arbitrary horizontal distance between two cross-sections
- **Bed slope** = So $[L/L] = -dz/dx = -(z^2-z^1)/L = tan\theta$
- Flow depth =y [L] = vertical distance from channel bottom to free water surface
- **Depth of flow sec** =d [L] = flow depth normal to flow, $d=ycos\theta$
- **Top width** = T[L] = Width at free-surface
- Flow area = A[L2] = cross-sectional area normal to flow direction
- Wetted perimeter = P[L] = length of channel boundary in contact with water
- Hydraulic radius = R[L] = A/P
- Hydraulic depth = D[L] = A/T
- Section Factor Critical Flow = Zc = AD^{1/2} [L^{5/2}]
- Section Factor Uniform Flow = $Zn = AR^{2/3} [L^{8/3}]$

Parameters: Circular Section

$\frac{y}{d_0}$	$\frac{A}{d_0^2}$	$\frac{P}{I}$	<u>R</u>	$\frac{T}{\cdot}$	$\frac{D}{d}$	$\frac{A\sqrt{D}}{\sqrt{2}}$	$\frac{AR^{2/3}}{d_0^{4/3}}$				
<i>d</i> ₀	<i>d</i> ₀	d ₀	<i>d</i> ₀	do	do	$d_0^{5/2}$	d_0^{-1}				
0.01	0.0013	0.2003	0.0066	0.1990	0.0066	0.0001	0.0000	-			
.05	0.0147	0.4510	0.0326	0.4359	0.0336	0.0027	0.0015				
).10	0.0409	0.6435	0.0635	0.6000	0.0682	0.0107	0.0065				
).15	0.0739	0.7954	0.0929	0.7141	0.1034	0.0238	0.0152				
0.20	0.1118	0.9273	0.1206	0.8000	0.1398	0.0418	0.0273			_	
).25	0.1535	1.0472	0.1466	0.8660	0.1774	0.0646	0.0427	· /			
.30	0.1982	1.1593	0.1709	0.9165	0.2162	0.0921	0.0610				1
.35	0.2450	1.2661	0.1935	0.9539	0.2568	0.1241	0.0820				
.40	0.2934	1.3694	0.2142	0.9798	0.2994	0.1603	0.1050		do		
).45	0.3428	1.4706	0.2331	0.9950	0.3446	0.2011	0.1298		0.0		
).50	0.3927	1.5708	0.2500	1.0000	0.3928	0.2459	0.1558				
).55	0.4426	1.6710	0.2649	0.9950	0.4448	0.2949	0.1825				
0.60	0.4920	1.7722	0.2776	0.9798	0.5022	0.3438	0.2092				
).65	0.5404	1.8755	0.2881	0.9539	0.5666	0.4066	0.2358				
0.70	0.5872	1.9823	0.2962	0.9165	0.6408	0.4694	0.2608				
.75	0.6318	2.0944	0.3017	0.8660	0.7296	0.5392	0.2840				
).80	0.6736	2.2143	0.3042	0.8000	0.8420	0.6177	0.3045				
).85	0.7115	2.3462	0.3033	0.7141	0.9964	0.7098	0.3212				
).90	0.7445	2.4981	0.2980	0.6000	1.2408	0.8285	0.3324				
).94*	0.7662	2.6467	0.2896	0.4750	1.6130	0.9725	0.3353	÷			
).95	0.7707	2.6906	0.2864	0.4359	1.7682	1.0242	0.3349	•			
00.1	0.7854	3.1416	0.2500	0.0000	æ	30	0.3117				

^aMaximum flow occurs at 0.94 full depth.

Flow State

- Reynolds Number
 - Laminar flow
 - Turbulent flow

 $\operatorname{Re} = \frac{VR}{V}$

- Froude Number
 - Subcritical flow
 - Supercritical flow
 - Critical flow

 $Fr = \frac{V}{\sqrt{gD}}$

Types of Flow

Variation in Time?

- Steady flow velocity and depth change with time
- Unsteady flow velocity and depth change with time

Variation in Space?

- Uniform flow velocity and depth same at every cross-section
- Nonuniform flow velocity and depth <u>vary</u> between cross-sections